This article has been accepted for publication in afuture issue of thisjournal, but has not been fully edited. Content may change prior to final publication. Citation

information: DOI 10.1109/TAFFC.2014.2313557, | EEE Transactions on Affective Computing

JOURNAL OF IATEX CLASS FILES, VOL. 0, NO. 0, JANUARY 0000

Design of a Wearable Device for Reading
Positive Expressions from Facial EMG Signals

Anna Gruebler, Member, IEEE, and Kenji Suzuki, Member, IEEE

Abstract—In this paper we present the design of a wearable device that reads positive facial expressions using physiological
signals. We first analyze facial morphology in 3 dimensions and facial electromyographic signals on different facial locations and
show that we can detect electromyographic signals with high amplitude on areas of low facial mobility on the side of the face,
which are correlated to ones obtained from electrodes on traditional surface electromyographic capturing positions on top of facial
muscles on the front of the face. We use a Multi-attribute Decision-making method to find adequate electrode positions on the
side of face to capture these signals. Based on this analysis, we design and implement an ergonomic wearable device with high
reliability. Because the signals are recorded distally, the proposed device uses Independent Component Analysis and an Artificial
Neural Network to analyze them and achieve a high facial expression recognition rate on the side of the face. The recognized
emotional facial expressions through the wearable interface device can be recorded during therapeutic interventions and for
long-term facial expression recognition to quantify and infer the user’s affective state in order to support medical professionals.

Index Terms—Electromyography, Face and gesture recognition, pattern recognition, wearable interface

1 INTRODUCTION

N recent years, there has been an increased interest

in detecting and supporting human physical and
psychological wellbeing. This has led to the rise of the
field of positive psychology which “focuses on well-
being, happiness, flow, personal strengths, wisdom,
creativity, imagination and characteristics of positive
groups and institutions” [1] and aims to analyze how
“individuals and groups thrive and how increasing
the wellbeing of one will have a positive effect on the
other.” [1].

Diener et al. proposed that wellbeing could be
defined as high life satisfaction and frequent positive
affect [2]. Further, Ryan and Deci describe two distinct
theories of psychological wellbeing, hedonism and
eudaimonism [3]. Hedonism considers that wellbeing
consists of pleasure or happiness while eudaimonism
maintains that well-being consists of fulfilling or real-
izing one’s true nature, and more long-term positivity,
happiness and wellbeing.

There has been a growing interest in the area of
Affective Computing, the study and development of
systems and devices that can recognize, interpret,
process, and simulate human affective information [4].
This has lead to improvement in affect aware and hap-
piness elicitation Human-Computer Interaction (HCI)
technologies [4], [5] and other real-time innovative
technologies to assess the benefits of striving for
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greater happiness [4], [6]. These technologies support
users achieving higher levels of wellbeing and it has
been proposed that support of wellbeing should be
included in the design of technology in order to use
data collected via sensors to assist in building tools to
help users [7].

Thus, an automatic, objective measure of wellbeing
could be used to support therapists, patients, engi-
neers and doctors in order to improve therapeutic ac-
tivities and devices, but both hedonic and edaimonic
wellbeing can be difficult to quantify directly and
objectively. However a potential source of information
can be the experiences of pleasure expressed though
facial expressions, which can be used to infer a per-
son’s emotions and give insights into their internal
state and happiness.

Facial expressions are an important means of non-
verbal communication between humans that play a
significant role in social information exchange. Both
voluntary and involuntary facial expressions give in-
formation about the character of the person, their
mood and the emotions they are feeling [8], [9]. The
ability to recognize emotions from a facial expres-
sion is innate to humans and is present possible as
early as from birth [10]. Research in psychology has
shown strong evidence for universal characteristic
facial expressions for anger, fear, enjoyment, sadness
and disgust [11].

In particular, we are investigating the accurate and
robust recognition of positive expressions during ther-
apeutic activities, rehabilitation and daily life situa-
tions. Smiling can express joy, affection and humor
as well as putting others at ease and frowning can
convey anger or disapproval. However, it is still dif-
ficult to measure facial expressions for long periods
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of time in real environments such as the locations for
therapeutic activities.

In the past, several approaches have attempted to
recognize emotional facial expressions. Human coders
can identify facial expressions by dividing them into
their components using tools such as the Facial Action
Coding System [12]. However, this approach is very
subjective because it depends exclusively on the im-
pression of the human coder and might be influenced
by the coder’s own emotions, habituation and context
leading to the possibility of different coders (or groups
of coders) coding differently [13], [14].

A number of approaches to automatic facial expres-
sion recognition use video and photographic cameras
to capture the face. Several computer vision algo-
rithms are used to identify the facial expression [15]-
[20]. These methods have a limitation in the fact that
they require a camera directed towards the user’s face
and little or no occlusion. Also they usually require
a fixed view, either the frontal view (usually <20°
rotation [15]-[17]) or a side view ( [21], [22]). They
also require a good resolution and do not perform
well under extreme lighting conditions [23]. All this
prevents the subject from free movement.

Another possible approach towards automatic fa-
cial expression recognition is the wearable approach.
Wearable devices allow the subject to have high mo-
bility and broaden the spectrum of environments the
facial expression recognition can be performed in. An
example of this is the use of displacement sensors
attached to the facial skin [24] or a small camera
oriented towards the user’s face [18]. However, pre-
viously developed wearable sensors are placed on
the front of the face and can be covering the face,
which is undesirable from the point of view of human
interaction.

The body’s physiological signals have also been
used for facial expression recognition using elec-
tromyography (EMG) [4]. The EMG signals have been
captured by placing electrodes directly over the facial
muscles on the front of the face in order to achieve the
strongest possible signal and minimize noise [25]-[30].
Electrodes have been placed on the zygomaticus major
muscle for smiling recognition and on the corrugator
supercilii muscle, which is activated while frowning
[25]. Placing the electrodes on the front of the face
has the drawback that the electrodes and the appa-
ratus and tape used obscure the expression giving
an unnatural look. Additionally, they have their own
weight and stiffness, which disturbs the user’s facial
movements and could be constantly felt, constantly
reminding users of the electrode’s presence, which is
an undesirable trait in an interface [28]. Further, the
front of the face is a highly mobile area and electrodes
become easily dislodged or moved.

EMG signals are electrical signals that propagate to
and from neighboring muscles [25]. Therefore, it can
be assumed that EMG signals form the front of the

face would propagate to surrounding areas. Thus, we
considered placing electrodes away from the front of
the face. Previous approaches have used large num-
bers of electrodes to classify facial expression from the
head using EMG and electro encephalogram (EEG)
[31], however, accuracy decreases dramatically when
using fewer electrodes. For the everyday use by able
bodied users as well as by persons with disabilities a
large number of electrodes is not desired and a more
efficient approach using fewer electrodes is necessary.
Work has also been done in the past to find optimal
electrode positions on the forehead [32], however this
area is in the front of the face and sensors obscure the
expression.

Hashimoto et al. [33] has analyzed the facial dis-
placement on top of facial muscles using video and
the corresponding EMG signal magnitude, however,
an analysis considering the 3-dimensional facial dis-
placement of areas of the front and side of the face is
necessary for good distal electrode position selection.

In this paper we present the use of a systematic
methodology to find appropriate electrode locations
on the side of the face for facial expression recognition
and the design of a wearable device that can be used
to record emotional facial expressions accurately for
long periods of time. This device can be used to
quantify the user’s facial expressions and infer their
affective state and can function in multiple environ-
ments, allowing the subject full mobility. The device
can be worn during therapeutic interventions as well
as during activities of daily life in order to help design
therapeutic activities and devices, Human-Computer
Interactions, and give feedback to patients.

In Section 2 we first present an analysis of facial
morphology using both the facial perpendicular dis-
placement, and the displacement of points on the skin
surface using 3-dimensional photography and track-
ing. Then, the propagation of facial EMG signals, us-
ing amplitude and correlation analysis, is examined.
Using Multi-attribute Decision-making methods, we
find adequate unobtrusive and ergonomic electrode
positions on the side of the face that have an adequate
signal and can be used to recognize the subject’s facial
expressions. In Section 3, we show that using inde-
pendent component analysis (ICA) and an artificial
neural network (ANN) a good classification of facial
expressions can be achieved from the side of the face.
In Section 4, we show how we designed a wearable
interface device that uses electrodes placed on the
locations selected in Section 2 that can recognize
facial expressions from distal EMG signals with high
accuracy as well as being ergonomic. In Section 5 we
show a discussion of results and possible applications.
In section 6 we conclude and present future work.

2 ELECTRODE POSITION SELECTION

In order to design of a wearable interface device
that uses EMG signals to recognize facial expressions
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from the face, first a good position for electrodes is
investigated.

2.1 Multi-attribute Decision-making

The problem of finding adequate electrode positions
on the face is a problem with multiple objectives be-
cause, for an adequate interface design, two objectives
should be taken into account: signal quality and user
comfort.

Gemperle et al. [35] proposed dynamic wearability
constraints that could be uses as guidelines in the
early stages of design. They define dynamic wear-
ability as the interaction between the human body
and the wearable object, taking into account the body
in motion. They propose that design for dynamic
wearability requires unobtrusive placement, where
the device contacts with the body in areas that are
relatively the same size across adults, have low move-
ment ant flexibility and a relatively large surface area.
Devices should also have a comfortable stable fit and
the device’s edges should be rounded. Further, they
specify that to achieve freedom of movement, devices
should be designed around more active areas or by
creating spaces the body can move into. Gemperle et
al. also recommended to minimize thickness as much
as possible so the device could stay within the body’s
intimate space and that weight should be minimal to
hinder the body’s movement. They also state that aes-
thetics should be considered to increase user comfort
and acceptance of the device. Even though Gemperle
et al. investigated devices worn on the body, we apply
their general guidelines to a device worn on the head
and face.

Taking the guidelines into account, in the electrode
position analysis problem there exists no dominant
solution because the recommended locations for EMG
signal acquisition on the face [25] are also the most
mobile areas on the front of the face.

Based on previous work [36], we introduce the
use of a systematic methodology for making deci-
sions with multiple objectives proposed by Keenery
and Raiffa [37] to find the best electrode positions
to use for the interface device. The electrode posi-
tions are chosen from a pool of possible electrode
positions, while taking into account the conflicting
requirements.

First, in order to find an adequate electrode po-
sition, attributers that can be used to quantify the
objectives are selected. For quantifying the signal
quality, the amplitude of the measured signal gives a
measure of the signal strength, which we define as our
first attribute for analysis. Additionally, by measuring
the correlation of the measured signal with the signal
captured directly on top of the muscle, we obtain an
additional measure of signal quality, which we define
as the second attribute of interest.

We try to maximize user comfort taking into ac-
count the principles of ergonomics which is the dis-
cipline that analyzes the interactions of humans and
other elements of a systems in order to optimize
human well being and overall system performance
[38]. Therefore we consider two attributes of facial
morphology by measuring the facial displacement,
both volumetric and of the facial surface.

The attributes, their requirements and their calcu-
lation method were summarized in Table 1.

In order to evaluate the selected attributes, we use
the additive value function shown in equation 1.

(T, T, T3, ey ) = D Aivi(i) @M
i=1

where v(z1, 29,23, ...,2,) is the score that should
be maximized in decision-making, \; is a scaling
constant so that > ; A; = 1 and A; > 0 in order to
assign weight to attributes according to the perceived
subjective importance. z; is the value of the attribute
recorded experimentally and v; is the component
value function that transforms the attribute into a nor-
malized value. Taking into account the requirements
in Table 1, the electrode position selection problem is
described as follows:

U(ZuLeaAwCe) - AIUZe(Ze) +A2UL6(L€) +

Azva, (Ae) + Mve, (Ce)  (2)

where v(Z,, L., Ae, C.) is the score of electrode pair
e for signal detection in the electrode’s effective area,
E.; Z, represents the total volumetric perpendicular
displacement in E.; L. is the linear displacement
of the marker point in the center of E.; A. is the
mean amplitude of the EMG signal for sustained
expressions and C, is the correlation of the root mean
squares of the EMG signal of e with the electrode
pair on the muscle responsible for the expression. The
parameters Z. and L. quantify facial displacement
and A, and C, are used to quantify the signal quality.

Fig. 1 shows the facial areas that were selected as
possible electrode positions for a wearable interface.
In order to give as fair assessment of the attributes
x;, the scores for each criteria Z., L., A. and C,, are
normalized to values in the range [0, 1]. All values
are normalized between the maximum and minimum
value of each attribute, and are scaled linearly and
proportionally between these two values by their
corresponding component value function v;.

For the attributes Z. and L., the smallest displace-
ment is preferred, for the attributes A. and C., the
biggest value is preferred. In the current implemen-
tation we use A\ = Ay = A3 = Ay = 1/4 to give all
attributes equal weight in decision-making.

2.2 Facial Morphology

In order to find adequate electrode locations on the
face it is necessary to analyze the facial morphology
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TABLE 1
Requirements for adequate electrode position selection.

Parameter Feature Requirements

Evaluation Method

Volumetric displacement (Ze)

Minimal to avoid obtrusiveness
and electrode movement

3D displacement of the points in the electrode’s
effective area E.:

Ze = ZzeEe |Xf - Xn
where f = {smile, frown}, n = {neutral}

’

Surface displacement (L)

Minimal to avoid obtrusiveness
and electrode movement

Linear displacement of the center of the electrode’s
effective area E.:

Le = |xf — x|, where z is the center of E.
where f = {smile, frown}, n = {neutral}

Main rectified amplitude of EMG (A¢)
a viable signal

High in order to detect

Ae = Mean(|Amplitudeg.|)

Correlation between signals (Cle)
expression detection

High in order to guaranty

Correlation of the root mean square of the distal
signals with the signals from the top of the
muscles: Ce = Correlation(RMSgm, RMSsq ),
where m = {1,2}, d = {1,2,3,4,5,6}

orbicularis
oculi

corrugator =
supercilii

zygomaticus
minor
zygomaticus
major

risorius

(a)

Fig. 1. (a) Selected facial muscles and facial zones for volumetric displacement analysis. (b) Marker locations
for surface displacement analysis (c) Electrode pairs’ positions (Original image of facial muscles by Lynch and

Jaffe [34])

and quantify facial displacement as well as analyze
the facial EMG signals. Electrodes for EMG detection
should move as little as possible to obtain a stable
signal and to avoid movement artifacts. We analyze
two kinds modalities of expressions, sustained ex-
pressions and dynamic expressions where the sub-
jects alternated facial expressions with neutral faces.
The modality depended on the data we intended to
analyze in order to design a wearable device that
could be used in real world situations. To analyze the
amplitude of the signal and the recognition rate of
the system, and for the 3-dimensional photography,
a posed fixed expression was the most unambiguous
choice. In order to evaluate signal amplitude corre-
lation and for the analysis of surface displacement,
a dynamic expression was captured by letting sub-
jects make expressions naturally in their own time,
to approximate the use of the device in real world
situations.

Facial displacement has been measured in the past
using vector flows [39] and Active Appearance Mod-
els [40]. In this work we use 3D photography and
3D tracking of markers for simplicity to obtain high
accuracy in 3 dimensions.

2.2.1 Volumetric Displacement Analysis

First, we analyzed the volumetric displacement of the
facial skin in 3 dimensions.

Subjects

12 healthy subjects (mean age 26.08, ranging from
23 to 32 years old; 8 male and 4 female; Japan:5,
Usbekistan:1, Brazil:1, Israel:1, China:1, Indonesia:1,
France:1, Venezuela:1).

Materials

3-dimensional pictures were taken using an image-
capturing device (Danae 100, NEC Engineering, Ltd.).

Task

The subjects were asked to perform the voluntary
expressions: smiling, frowning, and neutral face and
sustain them for a few seconds while the picture was
taken.

Analysis

The data was analyzed using 3D-Rugle software and
the perpendicular 3-dimensional facial displacement
using the normal vector between each facial expres-
sions and the neutral face was obtained. 6 areas of
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(a) Smiling

(b) Frowning

Fig. 2. Perpendicular 3-dimensional facial displace-
ment between emotional facial expressions and the
neutral face.

O Smiling
O Frowning
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Fig. 3. Facial displacement. The error bar represents
standard deviation.

interest were selected (circular with a diameter of 3.5
cm) on the 3-dimenional captured image, following
the natural features of the face (nose, eyes, eyebrows,
...), 2 on top of the facial muscles zygomaticus major
and corrugator supercilii respectively and 4 on the side
of the face, as seen in Fig. 1la. The displaced volume
was subsequently calculated.

Results

Figure 2 shows the perpendicular 3-dimensional facial
displacement between the emotional facial expres-
sions and the neutral face in one subject.

The average amount of displacement can be seen
in Figure 3a. The cheeks are particularly displaced
while smiling (Zone Z2, 3.17 cm?, SD=1.28) while
the forehead shows the biggest displacement while
frowning (Zone Z1, 2.08 cm3, SD=0.62). Zones Z3,
Z4, 75 and Z6 show almost no displacement during
emotional facial expressions while zones Z1 and Z2
on the muscles show high displacement.

2.2.2 Surface Displacement Tracking

Another method to quantify the facial displacement is
to analyze surface displacement by tracking markers
attached to the face in 3 dimensions.

Subjects
10 healthy subjects (mean age 26.7, ranging from
23 to 33 years old; 2 female, 8 male; Japan:4,

Venezuela:1, France:1, Sri-Lanaka:1, Israel:1, Nether-
lands:1, China:1).

Materials

A 3-dimensional facial motion capture device (Natural
Point Optitrack) with 7 infrared cameras, one of which
was used for video recording, was set up and the
points recorded using Arena. 6 markers were attached
to the face in the pattern shown in Fig. 1b, at the center
of the areas used for the volumetric displacement
analysis. 4 stationary protruding markers (standard
for the Optitrack) were used as reference on the
forehead.

Task

The subjects were asked to alternate voluntary facial
expressions with the neutral face in a continuous
manner. First, they alternated between smiling and
neutral face and then between frowning and neutral face.
The recording time was 30s for each expression.

Analysis

Using the point vectors corresponding to 3 of the fore-
head markers, a local coordinate system was created
and a transformation matrix constructed to transfer
the coordinates of markers both in rotation and dis-
placement to the local coordinates in order to exclude
head movements from facial expression displacement.
Using the synchronized video feed, 3 instances of
each expression for each subject were visually selected
from the data stream for further analysis. Each se-
lected segment began with the neutral face, continued
with the emotional facial expression and ended with
the return to the neutral face. For each segment, the
maximum 3-dimensional displacement, the difference
between the points during the neutral face and the
points of maximum displacement during facial ex-
pressions at each marker location, was calculated.
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Fig. 4. Rectified mean amplitude on different electrode
locations for smiling, frowning and biting. The error bar
represents standard deviation.

Results

The average amount of displacement for each ex-
pression can be seen in Fig. 3b. During smiling, the
maximum displacement was on marker L2 on the
cheek area (6.38 mm SD=2.36) and during frowning
the maximum displacement was in marker L1 (2.75
mm SD=1.11) and L3 (4.76 mm SD=1.77) in the brow
area. Markers L1, L3 and L4 showed little displace-
ment during smiling and markers L2, L4, L5 and L6
showed little displacement during frowning.

2.3 Electromyographic Signals

In order to find a suitable electrode location for distal
analysis, we analyzed the EMG signal amplitude and
correlation during emotional facial expressions away
from the front of the face.

Subjects

10 healthy subjects (mean age 24.6 years, ranging from
22 to 29 years old; 5 male, 5 female; Japan:4, China:1,
Israel:1, USA:1, Venezuela:1, Indonesia:1, Brazil:1).

Materials

6 differential electrode pairs were attached on the left
side of the subject’s face in the pattern seen in Fig.
1c, with electrode pairs in the center of the areas used
for the Volumetric Displacement Analysis. The signals
were recorded at 1kHz using custom-made 5 mm
diameter differential electrode pairs, electrode Gel
(Spectra 360), amplifiers (HEI EMG-AMP04, Harada
Electronics Industry) and a data logger (EMG DDL-
2A EMG, Harada Electronics Industry). The ground
electrode was placed behind the ear.

2.3.1 Signal Amplitude

We recorded the EMG signals during sustained posed
expressions in order to analyze the signal amplitude at
different electrode positions, as well as the signal from
the masseter muscle, used for moving the jaw. biting
was not taken into account in previous sections and
for the overall electrode position selection because the
biting action was considered a more internal action
with little effect on the skin on the side of the face.
However, noise from biting must be addressed if the
device intends to record signals from the side of the
face.

Task

The subjects were asked to perform voluntary expres-
sions and facial movements and sustain them. The
expressions and movements were neutral face, smiling,
frowning and biting. Four sets were taken of each
expression, each set was of length 7=4s.

Analysis

The recorded data was analyzed using Matlab. The
mean amplitude of the neutral face at each electrode
location for each subject was subtracted from the
mean amplitude of the emotional facial expressions
in order to obtain the difference in amplitude from
the baseline.

Results

Figure 4 shows the rectified mean amplitude differ-
ence between the facial expressions and the neutral
face on different electrode locations. The highest sig-
nal amplitude while smiling was recorded at electrode
position S2 on top of the zygomaticus major muscle,
but it was also possible to detect the signal at distal
electrode positions S3-56. The signal could hardly be
detected at electrode position S1. The highest signal
amplitude while frowning could be detected at elec-
trode position S1 on top of the corrugator supercilii
muscle, but it also was possible to detect the signal at
electrode positions 52-S4. However the signal could
hardly be detected at electrode positions S5 and Sé.
Finally, the signal during biting was present at all elec-
trode locations creating interference. It was especially
notable at the distal electrode locations S3-54 that lie
on the side of the face.

2.3.2 Correlation

In accordance with previous works [25], the electrode
locations that showed the highest signal amplitude
during emotional facial expressions were S1 (cor-
rugator supercilii) and S2 (zygomaticus major) during
frowning and smiling respectively. We analyzed the
correlation between these signals captured on top of
the facial muscles and the distal signals on the side
of the face during continuous expressions, capturing
the change in the signal as the face changes from the
neutral face to an emotional expression and back to
the neutral face.
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Fig. 5. Average correlation of signals for all subjects
during continuous facial expressions. The error bar
represents data range.

Task

The subjects were asked to alternate voluntary emo-
tional expressions with the neutral face in a continu-
ous manner. First, they alternated between smiling and
neutral face and then between frowning and neutral face.
Four sets were taken of each expression, each set was
of length 7=20s.

Analysis

The recorded data was analyzed using Matlab. The
correlation of the signal was calculated between the
signals at different electrode positions and the signal
of electrodes directly on top of the muscles, electrode
pair 2 during smiling and electrode pair 1 during
frowning respectively for each of the 4 recorded sets.

Results

Fig. 5 shows the correlation of the signal on different
electrode locations with the signals captured on the
electrodes directly on top of the muscles. Electrode
pairs 2, 3 and 4 show correlation during frowning and
electrode pairs 3-6 show correlation during smiling.

o8mile
08 — BFrown

S1 S2 S3 S4 S5 S6
Electrode Pair

Fig. 6. Score of electrode positions for use in an
interface device.

2.4 Electrode Position Evaluation

Using the Multiatribute Decision-making methodol-
ogy described in Section 2.1, we calculate the score
of each electrode position for facial expression recog-
nition taking into account the requirements of both
signal quality and ergonomics.

The values for each attribute were normalized to
values in the range [0, 1] using the additive value
function presented in Section 2.1, Equation 1. The
score for each electrode position was calculated using
Equation 2.

Fig. 6 shows the score of the different electrode loca-
tions for distal signal detection. For smiling, electrodes
S4 and S5 show the greatest scores. Electrode position
S1 showed the greatest score for frowning, however,
electrode positions 54 and S5 also showed high scores
for recognizing frowning.

3 FACIAL EXPRESSION RECOGNITION

Using the distal electrode locations on the side of the
face obtained from the analysis, we propose the use of
distal EMG signals for facial expression recognition.
Unlike the conventional way of recognition based on
EMG [25], we do not identify the activity of each
facial muscle. Instead we propose a pattern-based
classification where facial expressions are regarded as
a combination of the activity of all facial muscles. Be-
cause of the interference from the biting action and the
overlapping of the distal signal from different muscle
groups, computational methods must be applied to
increase accuracy for distal detection.

3.1

Independent Component Analysis (ICA) is used to
separate statistically independent components from
mixed signals by generating a demixing matrix using
iterative maximization of negentrophy [41]. ICA has
been used in the past to separate the signals that are a
mix of SEMG and distal EMG on the arm [42], [43] and

Methodology
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this leads to the assumption that the different muscle
groups on the face could generate statistically inde-
pendent signals and classification could be improved
through ICA.

The signal is initially band-pass and notch filtered
(5-350 Hz Bandpass and 50 Hz Notch) in order to
reduce motion artifacts and electrical noise. Then,
because of the mixed nature of the obtained distal
signal, in order to overcome the interference from the
biting action and obtain clearer signals for analysis,
ICA [44] is used. The ICA in this implementation sep-
arates the maximum number of possible independent
components possible, which equals the number of
recorded signals. After the ICA, the signal is rectified
by taking the absolute values of amplitude and then
average filtered (100 ms window) [45]. Rectifying
avoids values cancelling each other out when the
averaging filter is applied. The averaging filter serves
to exclude outliers and to increase accuracy because
each value then represents a window of measurement.

Because the ICA is an iterative method that does
not specify the order the independent components
will appear in or their amplitude, an Artificial Neu-
ral Network (ANN) is used to recognize the signal
pattern and classify the expression. ANNs have been
used previously to classify EMG signal patterns [43],
[46]. In the current implementation, the ANN is a
two-layer feed-forward network, with sigmoid hidden
and output neurons trained by back-propagation. 4
neurons were used in the hidden layer. The inputs
of the ANN are the rectified, smoothed independent
components and output is the classified expression.

3.2 Experiment

Taking into account the scores of different electrode
locations, we attempted to identify facial expressions
from distal signals from the left side of the face.

Subjects and Materials

The subjects (5 male, 5 female) had an average age
of 24.6 years, ranging from 22 to 29 years old;
Japan:4, China:1, Israel:1, USA:1, Vneezuela:1, Indone-
sia:1, Brazil:1. The signals were recorded on electrode
positions S3, S4 and S5 using the equipment and
parameters described in Section 2.3.

Task

The subjects were asked to perform voluntary expres-
sions and facial movements and sustain them. The
expressions and movements were neutral face, smiling,
frowning, biting and simultaneous biting and smiling.
Four sets of each expression were recorded, each set
was of length 7=4s.

Analysis

The recorded data was analyzed using Matlab. The
smoothed and rectified amplitude values of the in-
dependent components were used to train an ANN
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Fig. 7. Average recognition of positive, negative and
neutral affect by the ANN, for raw signals and sig-
nals after filtering and ICA from one side of the face.
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Fig. 8. Error Analysis of the output of the ANN in the
testing set.

for each user. The training set consisted of three 4s
long sets of each expression. The expressions neutral,
smiling, biting , frowning and simultaneous biting and
smiling were used to train the ANN to recognize
between smiling, frowning and neither. Smiling and si-
multaneous biting and smiling formed the classification
class smiling; biting and neutral the class neither. The
system was calibrated for each subject. The mean true
positives were calculated using leave-one-out cross-
validation.

Results

Results can be seen in Fig. 7 and Fig. 8. The use of ICA
significantly improved classification when compared
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LED Display

Electrode pair
Ground electrode

Electrode pair

Fig. 9. Wearable device using 2 electrode pairs for
facial expression recognition using distal EMG signals.

with the raw signal (P<0.001) for both smiling and
frowning in training and test sets. The statistical test
used was a Friedman test using blocks of 4 repetitions
for each user and 2 treatments: filtered ICA and non-
treated raw signal. Further, the use of 3 electrode
pairs offered significantly better classification results
than using only 2 electrode pairs (P<0.01). Further,
the number of false positives in the testing set is
small and especially false positives where smiling is
misclassified as frowning or vice-versa are less than
1% using ICA analysis and 3 electrode pairs.

4 WEARABLE DEVICE

We concluded the first part of the design process and
found adequate electrode positions on the side of the
face using a systematic methodology. We analyzed
different numbers of electrodes when attempting au-
tomatic facial expression classification, 2 pairs and 3
pairs from the left side of the face and obtained high
correct classification rates. We consider that, because
the scores for the selected electrode positions were
higher for smiling than for frowning, we obtained a
higher recognition rate for smiling.

3 electrode pairs on one side of the face offered
higher classification rates, however, the size of the
interface device would increase because of the added
electrode pair to cover the chin. According to the
requirements, user comfort could be prioritized and a
smaller interface chosen using only 2 electrode pairs,
which still offered good classification results. Because
we are concentrating especially on smile recognition
for quality of life (QoL) evaluation, 2 electrode pairs
offer sufficiently good classification.

Taking into account the dynamic wearability guide-
lines [35], and our electrode position analysis, we
built a prototype of the wearable device out of rigid
plastic. It is held in place by a head-support that
goes around the back of the head made of flexible
metal and covered in fabric. The head support has a
flexible point above the ear that can be bent in order
to account for different head and face shapes, the part
of the device against the face has rounded edges. The

Human Coding Lo i
start/end of the smile [ i

Wearble Device 1
Output of the ANN
0.5

O Qutput over .85
0

. . " . . . . . . L L L L
0 2000 4000 8000 8000 10000 12000 14000

Time in [ms]
Fig. 10. Coding of a smile from video by human coders
and from EMG by the wearable interface device during
a spontaneous conversation.

device uses custom-made S5Smm diameter Ag/Cl dif-
ferential electrode pairs, amplifiers (HEI EMG-AMP,
Harada Electronics Industry). It uses electrode gel-
tape (Harada Electronics Industry) between electrodes
and skin. It weights 67g.

In the proposed device, the facial expression can be
transmitted, recorded and displayed in the form of
lit LEDs on the side of the face. A prototype of the
wearable device can be seen in Fig. 9.

4.1 Comparison with human coders

We verified the use of the proposed interface device
by comparing the smile recognition ability of the
device with untrained human coders.

Video and bioelectrical signals of one sub-
ject(female, Japanese, 33 years old), who was not one
of the coders, were recorded during a spontaneous
natural conversation. The conversation took place be-
tween two women. Video was recorded in HD by
a video camera on a tripod 2m in front of them.
Signals from the right side of the face (two electrode
pairs) were acquired and used for analysis using the
proposed methodology. A clear smile with periods of
neutral face before and after was selected from the
video for further analysis by an untrained coder.

The human coders (one female, two male; mean
age 27.33 SD=6.81; France:1, Japan:l, Siria:1) were
given the instruction to identify the beginning and
end of the smile. They watched the video frame on
a 15in computer screen by frame and identified the
beginning and end frames.

Results can be seen in Fig. 10. Output of the neural
network higher than 0.85 is considered a smile. It can
be seen that the interface and human coders recognize
the smile in a similar manner.

The Kappa Coefficient is a measure of inter-rater
agreement for categorical items that takes into account
chance agreement [47]. We consider two categories,
smile (output of the ANN is higher than the predeter-
mined threshold 0.85) and other expressions. The Kappa
Coefficient among human coders was in average 0.89.
The Kappa coefficient between human coders and the
recognition by the classifier was in average 0.95.
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TABLE 2
Long-term continuous facial expression recognition precision and recall in [%]
Tested data Smile Frown Other

Precision  Recall Precision  Recall Precision  Recall

Training set (0 min) 98.77 99.28 98.11 97.52 99.37 99.15

1st test set (60min) 98.77 90.01 98.05 97.76 90.94 99.14

2nd test set (120min) 98.73 97.47 95.20 97.50 97.47 97.54

3rd test set (180min) 98.69 88.64 92.22 97.64 89.41 95.88

4th test set (240min) 97.83 93.95 97.78 97.72 94.18 97.95

4.2 Long-term verification

In order to verify the long-term continuous facial
expression recognition using the wearable device de-
scribed in section 4.1, one adult subject, female, 31
years old, Venezuelan, wore the wearable device for
an extended period of time. The subject was seated
comfortably and watched a movie on a 13in screen,
50cm from the person. The accuracy of expression
recognition was verified by recording the posed ex-
pressions smiling, biting, biting and smiling, frowning
and neutral face every 60min. biting and neutral face
were considered other expressions and smiling and
biting and smiling, smiling expressions. A training set
was created first at the beginning of the recording
period. Then the testing sets were recorded at 60min,
120min, 160min and 210min while the movie was
paused. Signals were transmitted wirelessly to a PC
for recording using an EMG Telemeter (Harada Elec-
tronics Industry). Training and test segments were
each 25s long (5s for each expression), each class was
recorded once for each time segment.

The accuracy of the classification using the training
set recorded at ¢ = Omin can be seen in Table 2. The
results show that the facial expression recognition is
good even after prolonged recording.

5 DISCUSSION
5.1 Wearable Device

A concern when using EMG signals is the possibility
of artifacts. Because of the design of the wearable
device, electrodes are held in place on the side of the
face and are not affected by head or environmental
movement. Additionally, bandpass filtering removes
strong movement artifacts and those that come from
other biosignals. Because we use a moving average
filter, outliers are also smoothed out, removing poten-
tial sources of artifacts. The trained device is robust
against mouth and jaw movement and smiling can
be detected while talking, likewise talking does not
usually cause false positives. The use of ICA allows
for the separation of pertinent signals and robust
classification through the ANN. Additionally it is of
importance to note that the device performs poorly
when trained on one person and testing the classifier
on data from another [45], which might be due to
differences in muscles size and location as well as
shape and type of surrounding tissue and bone. This

makes a person-independent training phase not fea-
sible, however, the training phase has been shortened
as much as possible, only 4s for each expression.

5.2 Application

The proposed device can be used in multiple situ-
ations to help recognize and improve the wellbeing
of users and recognize their affective state. The ad-
vantages of using facial EMG lie in the fact that it is
a continuous and quantitative measure of the facial
expression with a high temporal resolution.

The developed device can be used to record facial
expressions of subjects as they experience therapeutic
interventions that require the subject have full mo-
bility. For example, the device was used to record
the positive facial expressions of children with autism
spectrum disorders (ASD) as they experienced animal
assisted activities [48]. Because children with ASD suf-
fer difficulty expressing thoughts and emotions and
interacting in social situations [49], therapy for them
focuses on helping them improve their social and
interpersonal behaviors [50]. An objective measure
of their facial expressions using a wearable device
in addition to the observations of medical examiners
can be of benefit for the evaluation of the subject’s
wellbeing at the time of the therapy and the long-
term evaluation of the intervention. It is important to
note that the proposed wearable device does not aim
to replace the medical observer, but rather to offer
an additional objective measure of affect, as human
coders can be influenced by their own emotions and
expectations and different examiners can code the
same intervention differently [13], [14]. The proposed
device can be used to recognize the facial expressions
of persons with ASD in multiple environments and
therapeutic interventions.

Likewise, the device could be used to aid persons
suffering from major depressive disorders and their
physicians, as their affect-related shifts in expression
in response to robust positive stimuli have been
reported to differ according to whether they have
current depressive symptomatology [51]. By using the
proposed device, subjects could easily quantify their
reactions. Further, medical examiners treating persons
with depression often use self-reports of their affective
state [52], [53], long-term continuous facial expression
recognition using a wearable device could potentially
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be used to and obtain an additional measure of their
affective state that can be helpful to medical examin-
ers to quantify the subject’s wellbeing and progress
towards recovery.

Additionally, the device can be used to directly con-
trol devices, for example, a facial prosthesis for people
with hemi-facial paralysis to support the rehabilita-
tion by pulling on the facial skin [54]. The wearable
device can be used to recognize smiling expressions
from the healthy side of the face and use them as a
voluntary control signal to the facial prosthesis. This
type of prosthesis can be used to aid in rehabilitation
interventions by medical professionals.

6 CONCLUSION AND FUTURE WORK

Facial morphology is a fundamental factor when
recognizing facial expressions from EMG signals. In
this work, we systematically identified areas of low
facial displacement that contained viable signals for
classification that had both a high amplitude and
good correlation with the signals detected on top of
the facial muscles responsible for the emotional facial
expressions using Mutliattribute Decision-making.

By manipulating the weight parameters A, _,, the
attributes can be modified to prioritize signal strength,
correlation, or displacement in the decision making.
This can be useful for the design of interface devices
for diverse groups, such as adults or children or for
electrodes of different sizes.

By using ICA and ANN, we were able to read facial
expressions from these distal EMG signals and classify
smiling, frowning and neither with high accuracy. We
use person-specific calibration of the proposed device
to achieve the highest possible accuracy and to make
the system robust against slight changes in electrode
position from session to session, in order to inconve-
nience users as little as possible, training sets are only
4s for each expression.

The proposed device design was verified by evalu-
ating continuous spontaneous expressions using the
device and comparing the results to the facial ex-
pressions identified by human coders. Further, to
verify that the device could be used for long-term
facial expression recording, it was shown that over
a 4 hour time frame there is little difference in the
classification accuracy. For future work the device can
be further compared with human perceptions of facial
expressions for both trained and untrained coders in
variable circumstances and the design of the device
can be improved using qualitative user feedback.

The wearable device we developed can be used
in various environments to objectively record facial
expressions for long periods of time. It is less obtru-
sive to the user because it is away from the front of
the face and uses a small number of electrodes. The
wearable device can be used in rehabilitation and in
smile training and long-term smile monitoring where
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the subject has full mobility. We believe that QoL
and wellbeing can be quantified based on the facial
expressions during activities of daily life over long
periods of time without disturbing the user with the
proposed interface.
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